首页> 外文OA文献 >Amulet: Aggregating Multi-level Convolutional Features for Salient Object Detection
【2h】

Amulet: Aggregating Multi-level Convolutional Features for Salient Object Detection

机译:护身符:聚合突出的多级卷积特征   物体检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fully convolutional neural networks (FCNs) have shown outstanding performancein many dense labeling problems. One key pillar of these successes is miningrelevant information from features in convolutional layers. However, how tobetter aggregate multi-level convolutional feature maps for salient objectdetection is underexplored. In this work, we present Amulet, a genericaggregating multi-level convolutional feature framework for salient objectdetection. Our framework first integrates multi-level feature maps intomultiple resolutions, which simultaneously incorporate coarse semantics andfine details. Then it adaptively learns to combine these feature maps at eachresolution and predict saliency maps with the combined features. Finally, thepredicted results are efficiently fused to generate the final saliency map. Inaddition, to achieve accurate boundary inference and semantic enhancement,edge-aware feature maps in low-level layers and the predicted results of lowresolution features are recursively embedded into the learning framework. Byaggregating multi-level convolutional features in this efficient and flexiblemanner, the proposed saliency model provides accurate salient object labeling.Comprehensive experiments demonstrate that our method performs favorablyagainst state-of-the art approaches in terms of near all compared evaluationmetrics.
机译:完全卷积神经网络(FCN)在许多密集标记问题中均表现出出色的性能。这些成功的关键要素之一是从卷积层的特征中挖掘相关信息。然而,如何更好地聚合多级卷积特征图以进行显着目标检测尚待研究。在这项工作中,我们提出了Amulet,这是一种用于显着目标检测的通用聚合多级卷积特征框架。我们的框架首先将多级特征图集成到多种分辨率中,同时又包含了粗略的语义和精细的细节。然后,它自适应地学习将这些特征图以每种分辨率组合在一起,并预测具有组合特征的显着图。最后,将预测结果有效融合以生成最终显着图。另外,为了实现准确的边界推断和语义增强,将底层的边缘感知特征图和低分辨率特征的预测结果递归地嵌入到学习框架中。通过以这种高效灵活的方式聚合多级卷积特征,所提出的显着性模型提供了准确的显着对象标记。综合实验表明,在几乎所有比较的评估指标上,我们的方法都比最新方法表现出色。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号